全国数学竞赛怎么考
1980年,在大连召开的第一届全国数学普及工作会议上,确定将数学竞赛作为中国数学会及各省、市、自治区数学会的一项经常性工作,每年10月中旬的第一个星期日举行“全国高中数学联合竞赛”。
全国高中数学联合竞赛是中国高中数学学科的较高等级的数学竞赛,其地位远高于各省自行组织的数学竞赛。
在这项竞赛中取得优异成绩的全国约200名学生有资格参加由中国数学会主办的中国数学奥林匹克(CMO)。
在CMO中成绩优异的60名左右的学生可以进入国家集训队。
经过集训队的选拔,将有6名表现最顶尖的选手进入中国国家代表队,参加国际数学奥林匹克(IMO)。
百科回的答,版治权必且究力,未经许可,物不得转载自2010年起,全国高中数学联赛试题新规则如下:联赛分为一试、加试(即俗称的“二试”)。
各个省份自己组织的“初赛”、“初试”、“复赛”等等,都不是正式的全国联赛名称及程序。
工而点好开些天四问意系代组例确信何。
一试和加试均在每年10月中旬的第一个周日举行。
一试一地子量本,但术米研适。
考试时间为上午8:00-9:20,共80分钟。
试题分填空题和解答题两部分,满分120分。
其中填空题8道,每题8分;解答题3道,分别为16分、20分、20分。
(2009年的旧规则和2008年之前的旧规则略去。
)加试(二试)考试时间为9:40-12:10,共150分钟。
试题为四道解答题,前两道每题40分,后两道每题50分,满分180分。
试题内容涵盖平面几何、代数、数论、组合数学等。
(2009年的旧规则和2008年之前的旧规则略去。
)依据考试结果评选出各省级赛区级一、二、三等奖。
其中一等奖由各省负责阅卷评分,然后将一等奖的考卷寄送到主办方(当年的主办方),由主办方复评,最终由主管单位(中国科协)负责最终的评定并公布。
二、三等奖由各个省自己决定。
各省、市、自治区赛区一等奖排名靠前的同学可参加中国数学奥林匹克(CMO)。
一试全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。
二试1、平面几何基本要求:掌握高中数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
几个重要的极值:到三角形三顶点距离之和最小的点--费马点。
到三角形三顶点距离的平方和最小的点--重心。
三角形内到三边距离之积最大的点--重心。
几何不等式。
简单的等周问题。
了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。
在周长一定的简单闭曲线的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。
几何中的运动:反射、平移、旋转。
复数方法、向量方法。
平面凸集、凸包及应用。
2、代数在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。
三倍角公式,三角形的一些简单的恒等式,三角不等式。
第二数学归纳法。
递归,一阶、二阶递归,特征方程法。
函数迭代,求n次迭代,简单的函数方程。
n个变元的平均不等式,柯西不等式,排序不等式及应用。
复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。
圆排列,有重复的排列与组合,简单的组合恒等式。
一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。
简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。
3、立体几何多面角,多面角的性质。
三面角、直三面角的基本性质。
正多面体,欧拉定理。
[1]体积证法。
截面,会作截面、表面展开图。
4、平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。
二元一次不等式表示的区域。
三角形的面积公式。
圆锥曲线的切线和法线。
圆的幂和根轴。
5、其它抽屉原理。
容斥原理。
极端原理。
集合的划分。
覆盖。
梅涅劳斯定理托勒密定理西姆松线的存在性及性质(西姆松定理)。
赛瓦定理及其逆定理。