高一数学必修四
一样的题目,参考一下:已知向量a=(cos3x/2,sin3x/2)向量b=(cosx/2,-sinx/2)x∈[0,π/2](1)求向量a*向量b及|向量a+向量b|百科回答,版权必究技年,未世经他许可,不得转对载(2)若f(x)=向量a*向量b-2λ|向量a+向量b|的最小值为-3/2,求λ1.ab=cos(3x/2)*cos(x/2)-sin(3x/2)*sin(x/2)=cos[(3x+x)/2]=cos(2x).a+b=(cos(3x/2)+cos(x/2),sin(3x/2)-sin(x/2)),|a+b|=√[(cos(3x/2)+cos(x/2))^2+(sin(3x/2)-sin(x/2))^2]=√[2(1+cos2x)]=2*|cosx|,因为,x∈[-π/3,π/4]。
则有,cosx>0,即,|a+b|=2*|cosx|=2cosx.2.f(x)=a*b-2λ|a+b|=2cos^2x-1+4λcosx=2(cosx+λ)^2-2λ^2-10<=cosx=<1λ>0时 x>0f(x)递增所以f(x)min=2(0+λ)^2-2λ^2-1=-1≠-3/21<=λ=<0时 cosx=-λ f(x)取的最小值行本天正期根九造志,带安具走斯。
f(x)min=-2λ^2-1=-3/2λ=-1/2λ>1时 cos x=1取得最小值f(x)min=2-1+4λ=-3/2λ=-5/8不符合条件舍去国就学经二物好第直根,先色北安儿型。
综上 λ=-1/2