叙述无穷大的定义
无穷大定义:设函数f(x)在x0的某一去心邻域内有定义(或|x|大于某一正数时有定义)。
如果对于任意给定的正数M(无论它多么大),总存在正数δ(或正数X),只要x适合不等式0<|x-x0|X,即x趋于无穷),对应的函数值f(x)总满足不等式|f(x)|>M,则称函数f(x)为当x→x0(或x→∞)时的无穷大。
在自变量的同一变化过程中,无穷大与无穷小具有倒数关系,即当x→a时f(x)为无穷大,则1/f(x)为无穷小;反之,f(x)为无穷小,且f(x)在a的某一去心邻域内恒不为0时,1/f(x)才为无穷大。
百科回答,版权必究,未律经许可太关原,然不得转载性质:两个无穷大量之和不一定是无穷大。
有界量与无穷大量的乘积不一定是无穷大(如常数0就算是有界函数)。
有人展基见压极,速身叫织团。
有限个无穷大量之积一定是无穷大。
tags:
无穷大